Kernel-Based Object Tracking

نویسندگان

  • Dorin Comaniciu
  • Visvanathan Ramesh
  • Peter Meer
چکیده

A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Novel Concept of Potential Pixel Energy for Object Tracking

Abstract   In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...

متن کامل

Visual Tracking using Kernel Projected Measurement and Log-Polar Transformation

Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Mean shift based object tracking with accurate centroid estimation and adaptive Kernel bandwidth

The object tracking algorithms based on mean shift are good and efficient. But they have limitations like inaccuracy of target localization and sometimes complete tracking failure. These difficulties arises because of the fact that in basic kernel based mean shift tracking algorithm, the centroid is not always at the centre of the target and the size of tracking window remains constant even if ...

متن کامل

اصلاح ردیاب انتقال متوسط برای ردگیری هدف با الگوی تابشی متغیر

The mean shift algorithm is one of the popular methods in visual tracking for non-rigid moving targets. Basically, it is able to locate repeatedly the central mode of a desirable target. Object representation in mean shift algorithm is based on its feature histogram within a non-oriented individual kernel mask. Truly, adjusting of the kernel scale is the most critical challenge in this method. ...

متن کامل

Improved Kernel-Based Object Tracking Under Occluded Scenarios

A successful approach for object tracking has been kernel based object tracking [1] by Comaniciu et al.. The method provides an effective solution to the problems of representation and localization in tracking. The method involves representation of an object by a feature histogram with an isotropic kernel and performing a gradient based mean shift optimization for localizing the kernel. Though ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003